Line Symmetry and Rotational Symmetry

Line Symmetry

Symmetry

Line symmetry means that if you take a figure or graph and reflect it, or rotate it, over a line, the picture is going to look exactly the same.

With rotational symmetry, we can rotate around a point and come back to the exact same figure.

Lesson Objectives

By the end of this lesson, you should be able to:

• Determine the symmetry of a figure from a graph.
• Determine the symmetry of a figure from a graph.
Words to Know

Fill in this table as you work through the lesson. You may also use the glossary to help you.

| even function | a function that is \(f(x) \) with respect to the \(x \)-axis; even if and only if \(f(x) = f(-x) \) for all \(x \) in the domain of \(f \) |
| odd function | a function that is symmetric with respect to the \(y \)-axis; odd if and only if \(f(-x) = -f(x) \) for all \(x \) in the domain of \(f \) |
Line Symmetry with Respect to the y-axis

For any point (x, y) that lies on the graph, the point (\square, y) has to also lie on the graph.

In function notation: $f(x) = \square$

Even Functions

An even function is symmetric with respect to the x-axis.

If f is an even function, then $f(-x) = \square$.

Examples:

1. $f(x) = x^2$
 - $f(-3) = 9$
 - $f(3) = \square$

So $(\square, 9)$ and $(3, 9)$ both fall on the graph, which means this function is going to be \square.

2. $f(x) = x^2 - 5x + 1$
 - $f(-1) = (-1)^2 - 5(-1) + 1$
 - $= 1 + 5 + 1 = \square$

 $f(1) = (1)^2 - 5(1) + 1$
 - $= 1 - 5 + 1 = \square$

 This is not even.
Instruction

Symmetry

Rotational Symmetry with Respect to the Origin

Rotational symmetry around the origin is always 0°.

If I plug in \(x \) and get out \(y \), if I have rotational symmetry with respect to the origin, that means when I plug in \(-x\) into the same function, I should get out \(y \).

Odd Functions

An **odd function** is symmetric with respect to the origin.

If \(f \) is an odd function, then \(f(-x) = -f(x) \).

Example: \(f(x) = x^3 - 5x^2 + 2x \)

\[
\begin{align*}
f(2) &= 2^3 - 5(4) + 4 \\
&= 8 - 20 + 4 \\
&= -12 + 4 \\
&= 8 \\
f(-2) &= (-2)^3 - 5(-4) + 2(-2) \\
&= -8 - 20 - 4 \\
&= -28 - 4 \\
&= -12
\end{align*}
\]

If I plug in 2 I get out –8. For it to be odd, if I plug in –2, I should have gotten out 8. So, this is not an odd function.
Instruction

Symmetry

Analyze a Function Using Symmetry

The graph of the function shown has been hidden for \(x \geq 0 \). Complete the graph of the function if it is an odd function.

Sketch the completion of the graph.

![Graph of a function with points at (x, y) coordinates.](image)
Given that \(f(x) \) is even and \(g(x) \) is odd, determine whether their sum is even, odd, or neither.

If \(f(x) \) is even, it means \(f(-x) = \) and \(g(x) \) is odd, which means \(g(-x) = \).

Determine whether the sum is even, odd, or neither.

\[
(f + g)(-x) = f(-x) + g(-x) =
\]

\[
(f + g)(x) = f(x) + g(x)
\]

Because these two signs are , it's not an function. Similarly, you can't factor out a negative sign to take the \(-x\) out. That means the function can also not be odd. So the answer is .
Lesson Question
How can you tell if a relation has symmetry?

Answer

Review: Key Concepts

Line symmetry: A line of symmetry divides the graph into halves that are of each other.

Rotational symmetry: The graph can be about a point and look the same.

f (-x) = f (x)

(180° rotational)
f (-x) = -f (x)
Review: Common Problem Types

Determine if a function has symmetry from its rule:

- Substitute \(-x\) in the function in place of \(x\) and simplify. If the resulting function:
 - is the \(\quad\), then it’s an even function.
 - has \(\quad\) on all the terms, then it’s an odd function.

Determine key features or points on a graph:

- If the \(x\)-coordinates are opposites, then the \(y\)-coordinates:
 - are the same if it is an \(\quad\) function.
 - are opposites if it is an \(\quad\) function.
Summary

Symmetry

Use this space to write any questions or thoughts about this lesson.