Edgenuity®

Warm-Up

Introduction to Functions

Lesson Question

Lesson Goals					
	Understand relationships.				
Define a function	on in	Identify the	e domain	Determine w	hether or
terms of its		and	of	not a	
and output.		a relation.		is a function.	

Words to Know

Fill in this table as you work through the lesson. You may also use the glossary to help you.

the set of output values corresponding to the domain values
the variable in a function that represents the output values; the second coordinate in the ordered pairs
a relation in which each element of the domain is mapped to (paired with) exactly one element of the range
the set of input values for which the function is defined

© Edgenuity, Inc.

Warm-Up

Introduction to Functions

a set of ordered pairs
the variable in a function that represents the input values; the first coordinate in the ordered pairs

Creating an Input/Output Table of Values

Create a table of input and output values for the equation y = 5 + 3x.

$$x = -2$$
 $y = 5 + 3(-2) = -1$

$$x = -1$$
 $y = 5 + 3(-1) = 2$

$$x = 0$$
 $y = 5 + 3(0) =$

$$x = 1$$
 $y = 5 + 3(1) = 8$

	Outputs
-2	
-1	2
0	
1	8
	11

Edgenuity

Instruction

Introduction to Functions

Slide

	311	ue
4		
		(
	74	
Ç.		

Independent and	Dependent	Variables
-----------------	-----------	------------------

The independent variable represents the input values and the dependent variable represents the values.

Isaac takes a 216-mile trip from Boston to New York City. He drives at a rate of 54 miles per hour. The equation d = 54t models his distance, d, over time, t, in hours.

Complete the table of values and identify the independent and dependent variables.

independent	
	output

Time	Distance
0	0
1	
2	108
3	
4	216

Instruction

Introduction to Functions

Slide 4

Defining Domain and Range of a Function

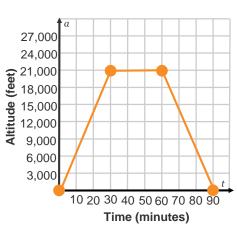
The is the set of input values for which the **relation** is defined. The

is the set of output values corresponding to the domain values.

Isaac takes a 216-mile trip from
Boston to New York City. He drives at
a rate of 54 miles per hour. The
equation d = 54t models his
distance, d, over time, t, in hours.

Domain: $\{t|0 \le t \le \boxed{}\}$

Range: $\{d \mid \leq d \leq 216\}$


Time	Distance
0	0
1	54
2	108
3	162
4	216

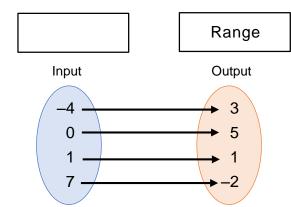
6

Determining the Domain and Range from a Graph

The altitude of a plane, a, over time, t, is shown in the graph. Identify the domain and range.

Domain: $\{t \mid \underbrace{\qquad} \leq t \leq \underbrace{\qquad} \}$ Range: $\{a \mid \underbrace{\qquad} \leq a \leq \underbrace{\qquad} \}$

Edgenuity


Instruction

Introduction to Functions

8

Determining Domain and Range from a Mapping Diagram

The ordered pairs (-4, 3), (0, 5), (1, 1), and (7, -2) represent a relation. Determine the domain and range.

Domain: $\{x | x = -4,$, 1, 7}

Range: $\{y|y=-2, \boxed{ }, \boxed{ }, 5\}$

11

Defining Function

In a **function**, each value for the independent variable (input values) maps to exactly value for the dependent variable (output values).

Isaac takes a 216-mile trip from Boston to New York City. He drives at a rate of 54 miles per hour. The equation d=54t models his distance, d, over time, t, in hours.

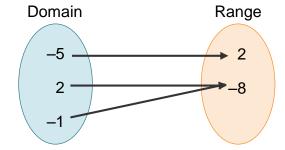
For every given time, there was given distance.

Isaac's distance is a of time.

Time	Distance
0	0
1	54
2	108
3	162
4	216

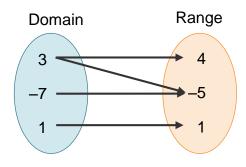
Edgenuity

Instruction


Introduction to Functions

Slide 13

Function Versus Not a Function


To determine if a relationship is a function, ask, "Does each element in the domain correspond to one element in the ?"

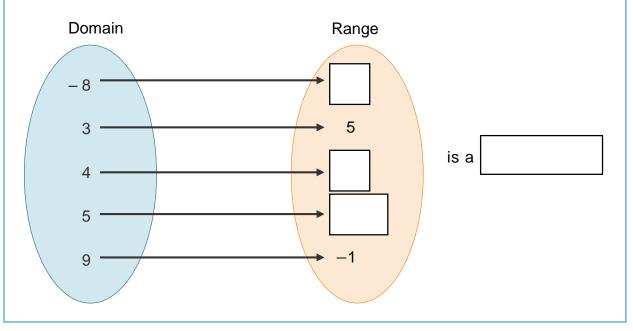
Function

Each element in the domain has only one .

a Function

3 has an output of 4 but it also corresponds to . Since it corresponds to more than one output, then I know it is not a function.

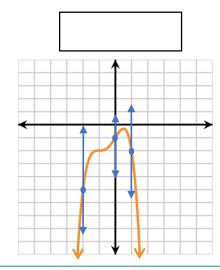
Instruction

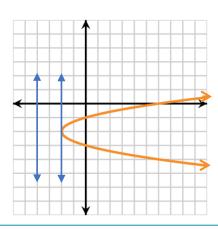

Introduction to Functions

13

Determining if a Relationship Is a Function

Determine if the set of ordered pairs represents a function.


$$(3,5), (-8,0), (5,-2), (4,4), (9,-1)$$


15

The Vertical Line Test

If any line passes through no more than one point, then the graph represents a function.

Not a Function

Edgenuity®

Summary

Introduction to Functions

Answer

Use this space to write any questions or thoughts about this lesson.

© Edgenuity, Inc.