

Warm-Up

Analyzing Graphs

W₂k

Words to Know

Fill in this table as you work through the lesson. You may also use the glossary to help you.

<i>x</i> -intercept	the point on a graph at which the graph crosses the <i>x</i> -axis
local minimum	smallest function value over a specific interval of the domain
local maximum	largest function value over a specific interval of the domain

Warm-Up

Analyzing Graphs

C

Words to Know

Fill in this table as you work through the lesson. You may also use the glossary to help you.

end behavior	a function's behavior as the input values increase to positive infinity or decrease to negative infinity
interval	all the values found between two given endpoints
y-intercept	the point on a graph at which the graph crosses the y-axis

Using Graphs to Find Function Input and Output Values

Use the graph of g(x) to find the indicated function's values.

Circle the point with an input of -1.

Circle the point with an output of 3.

Instruction

Analyzing Graphs

Slide

4

Instruction Analyzing Graphs

Analyzing Graphs in Context

REAL-WORLD CONNECTION

Lorena is making a storage container from a piece of cardboard with side lengths (x + 3) and (x - 1). She is going to cut 2 in. from each corner to be folded up for storage. The equation that represents the volume of the container is V(x) = (x - 1)(x - 5)(2).

UNDERSTANDING THE GRAPH

Consider the graph that represents the volume of Lorena's container.

What do the intercepts mean in terms of the context?

What is an appropriate domain for the given function?

Instruction

Analyzing Graphs

Instruction

Analyzing Graphs

Summary

Analyzing Graphs

Lesson Question

What can you tell about a functional relationship from its graph?

Answer

(Sample answer) When you zoom in on a graph, you can find key features of the graph, such as intercepts and end behavior, as well as local maximum and local minimum values.

Slide

Review: Key Concepts

Key features of a function's graph allow for a detailed analysis of the represented relationship.

- Intercepts indicate where the graph crosses the axes.
- Positive and negative function values indicate location relative to the
 -axis
 - × -axis.
- Local maximums and

local minimums indicate

where a function changes from

increasing to decreasing or vice versa.

Summary

Analyzing Graphs

Use this space to write any questions or thoughts about this lesson.