Lesson Question

What can you tell about a functional relationship from its graph?

Words to Know

Fill in this table as you work through the lesson. You may also use the glossary to help you.

x-intercept	the point on a graph at which the graph crosses the x-axis
local minimum	smallest function value over a specific interval of the domain
local maximum	largest function value over a specific interval of the domain

Words to Know

Fill in this table as you work through the lesson. You may also use the glossary to help you.

end behavior	a function's behavior as the input values increase to positive infinity or decrease to negative infinity
interval	all the values found between two given endpoints
y-intercept	the point on a graph at which the graph crosses the y-axis

Using Graphs to Find Function Input and Output Values

Use the graph of $g(x)$ to find the indicated function's values.
Circle the point with an input of -1 .
$g(-1)=1$
Circle the point with an output of 3.
$g(-1)=3$
$x=1$

Edgenuity

Instruction

Analyzing Graphs

Intercepts of a Graph

Example: Analyze the function's graph and determine its intercepts, if any.

x-intercept(s)
Draw a point at each x-intercept.

y-intercept

Draw a point at the y-intercept.
$(0, \boxed{-5})$

Important Features of Graphs

Analyze the function's graph and

the graph is positive or negative.
$f(x)>0$
$(-\infty, \boxed{-1}) \cup(\boxed{5}, \infty)$
$f(x)<0$
$(-1,5)$

Instruction

Analyzing Graphs

Analyzing Graphs in Context

REAL-WORLD CONNECTION

Lorena is making a storage container from a piece of cardboard with side lengths
$(x+3)$ and $(x-1)$. She is going to cut 2 in. from each corner to be folded up for storage. The equation that represents the volume of the container is
$V(x)=(x-1)(x-5)(2)$.

The input represents:
x is used to determine the length and the width of our box.

The output represents:
$V(x)$ represents the volume of our box.

UNDERSTANDING THE GRAPH

Consider the graph that represents the volume of Lorena's container.

What do the intercepts mean in terms of the context?

$$
\begin{aligned}
& x \text {-int.: }(\boxed{1}, 0),(\boxed{5}, 0) \\
& y \text {-int.: }(0, \boxed{10})
\end{aligned}
$$

What is an appropriate domain for the given function?

Instruction

Analyzing Graphs

Analyzing a Function's End Behavior
Analyze the graph to determine the \square end behavior

- As x goes to $+\infty$, the function's values go to ∞.
- As x goes to $-\infty$, the function's

Determining When a Function is Increasing or Decreasing

Analyze the graph to determine the intervals of decreasing and increasing function values.

For what x-values are the function's values increasing?

$$
(-\infty, \boxed{-1}) \cup\left(\frac{5}{3}, \infty\right)
$$

For what x-values are the function's values decreasing ?

$$
\left(\boxed{-1}, \frac{5}{3}\right)
$$

Edgenuity

Instruction
 Analyzing Graphs

Calculating Local Maximum and Local Minimum Values

Use the graph to determine the local minimum and local
maximum values for the function.

Local minimum:
$(\boxed{-5},-95)$ and $(\boxed{2},-95)$

Local maximum:
$(\boxed{-1.5}, 55.06)$

Summary

Analyzing Graphs

What can you tell about a functional relationship from its graph?

Answer

(Sample answer) When you zoom in on a graph, you can find key features of the graph, such as intercepts and end behavion, as well as local maximum and local minimum values.

Review: Key Concepts

Key features of a function's graph allow for a detailed analysis of the represented relationship.

- Intercepts indicate where the graph crosses the axes
- Positive and negative function values indicate location relative to the x-axis.
- Local maximums and
\square indicate

where a function changes from increasing to decreasing or vice versa.

Edgenuity

Summary

Analyzing Graphs

Use this space to write any questions or thoughts about this lesson.

